Prosodic encoding of informativity

Iris Ouyang and Elsi Kaiser University of Southern California Oct 1, 2013 4th Intl Summer School, Aix-en-Provence, France

What affects the prosodic profile of an utterance?

Information theory

- Word frequency (e.g. Gahl 2008)
 low-freq => high prominence
- Contextual probability

 (e.g. Pan & Hirschberg 2000)
 low-prob => high prominence

Information structure

• Narrow vs. Broad focus (e.g. Breen, Fedorenko, Wagner &

Gibson 2010)

- narrow >> broad
- Corrective focus vs. Newinformation focus

(e.g. Katz & Selkirk 2011; Chen & Braun 2006)

corrective >> plain new

This study

Road map

- Production study:
 - Design
 - Method
- General results

• Speaker-specific patterns

Conditions

	High Contextual Probability	Low Contextual Probability
High Word	Frequent Word	Frequent Word
Frequency	Probable Context	Improbable Context
Low Word	Infrequent Word	Infrequent Word
Frequency	Probable Context	Improbable Context

<u>Frequent Word in Probable Context</u>: *They kicked cars in the garage.* <u>Infrequent Word in Probable Context</u>: *They kicked cans in the garage.* <u>Frequent Word in Improbable Context</u>: *They kicked books in the garage.* <u>Infrequent Word in Improbable Context</u>: *They kicked shells in the garage.*

Word frequency

- SUBTLEXus database (http://expsy.ugent.be/subtlexus/)
- High frequency = 40.16-83.49 per million
- Low frequency = 0.41-13.22 per million
- Log frequency difference in a high/low frequency pair (e.g. *kicked cars/cans in the garage*) = 0.71-2.04

Contextual probability

- Based on results of our norming study
 - *Rita kicked _____ in the garage.*
- High probability = 2 out of the 3 most popular (6-14%) responses
- Low probability = never given as response in norming No probability difference in a high/low frequency pair (e.g. *kicked cars/cans in the garage*), to avoid frequency-probability correlation

Conditions

(No,) they kicked in the garage.	High Contextual Probability	Low Contextual Probability
High Word Frequency	cars	books
Low Word Frequency	cans	shells

Sentences are elicited by questions:

- New-information focus: *What did Rita and Diane kick in the garage?*
- Corrective focus: I've heard that Rita and Diane kicked dirt in the garage.
- VP focus (= baseline): What did Rita and Diane do?

(No,) They kicked cars/books/cans/shells in the garage.

2*2*3 within-subject design8 objects, 4 contexts48 targets, 48 fillers16 participants

Method

Participant worked with a partner (lab assistant).

Participant

Corrective vs. New-Info vs. VP

they kicked cars/cans/books/shells in the garage

In this experiment,

- Corrective focus = corrective Obj (one word)
- New-information focus = new Obj (one word)
- VP focus = new [Verb Obj LocP] (entire phrase)

Prominence of Obj differs between these focus conditions: corrective > new-info > VP (e.g. Breen et al 2010, Katz & Selkirk 2011)

We looked for prominence differences of Obj in:

- Pitch right before Obj (pre-focus compression)
- Pitch during Obj
- Pitch right after Obj (post-focus compression) (e.g. Xu, Chen & Wang 2012)

The roles of word frequency and contextual probability

Focus-Only Hypothesis = Information structure (IS) determines prosodic prominence. Different IS categories remain distinct regardless of word frequency and contextual probability

PROSODIC PROMINENCE OF OBJ	Probable Context	Improbable Context
Frequent Word	corrective > new-info > VP	corrective > new-info > VP
Infrequent Word	corrective > new-info > VP	corrective > new-info > VP

- Prior work on focus types has not looked closely at freq and prob
- BUT Baker & Bradlow (2009): low-frequency words allowed smaller differences between new vs. given information
 - Casts some doubt on focus-only hypothesis

The roles of word frequency and contextual probability

Overall-Informativity Hypothesis = Information structure (IS) determines prosodic prominence, but IS effects are weak when another factor also demands emphasis

- To what extent? Could IS effects disappear?
- In what way? Could word frequency and contextual probability have different impacts?

PROSODIC PROMINENCE OF OBJ	Probable Context	Improbable Context
Frequent Word	 Strong effects of focus No other factor demands prosodic prominence IS would play a key role 	 Weak effects of focus Low-prob brings prominence IS distinctions might be somewhat masked
Infrequent Word	 Weak effects of focus Low-freq brings prominence IS distinctions might be somewhat masked 	 Weakest/No effects of focus Two other sources of prosodic prominence IS effects might disappear 13

Results

Deeper dipping after Obj = More prominent Obj

Predictions revisited

	Probable Context	Improbable Context
Frequ ent Word	 Prediction: strong focus effect Result: CORR=NEW >> VP Both corrective and new-info focus add extra prominence to Obj. 	 Prediction: weak focus effect Result: NEW >> CORR=VP Corrective focus does NOT add extra prominence to Obj, yet new-info focus does.
Infreq uent Word	 Prediction: weak focus effect Result: CORR >> NEW=VP Only corrective focus adds extra prominence to Obj; new-info focus does NOT. 	 Prediction: weakest/no effect Result: NEW=CORR=VP Neither corrective or new-info focus adds extra prominence to Obj.

'Saturation effect' in post-focus compression?

- Narrow focus (correction and new information) gives prominence to focused elements.
 - Post-focus pitch lowering is one way to prosodically encode this prominence.
- Effects of narrow focus start disappearing when another factor also demands prosodic prominence (when the focused element is an infrequent word or occurs in an improbable context).
- Effects of narrow focus completely disappear when there are two other sources of prosodic prominence.

- Low word frequency and low contextual probability both mask the distinctions between different information-structural categories.
- Nevertheless, they don't **equally** impact all the information-structural categories.

What matters to whom?

 Corrective focus appears to be impacted more by contextual probability, whereas new-information focus seems to be impacted more by word frequency.

Interaction between information structure and contextual probability

- In low-probability contexts, corrective focus patterns with VP focus.
- Seems to go against established knowledge:
 - correction => strong emphasis => high prominence
- In our study: corrective focus => correcting partner's incorrect belief
 - I heard that Rita and Diane kicked dirt in the garage.
 - No, they kicked <u>books</u> in the garage.
- When the right information was contextually improbable, partner's mistake might not be so surprising/unexpected => less need for prominence in the correction?
- Existing studies on focus types: mostly probable contexts

Interaction between information structure and word frequency

- For low-frequency words, new-information focus patterns with VP focus.
- In our study (and in general?), infrequent words are more informative, conveying more specific, detailed information, so it might not be surprising/unexpected that the partner asked.
 - They kicked <u>cans</u> vs. cars in the garage.
- **BUT**: Others have found that words in narrow focus is more prominent than words in broad focus
- Why? Existing studies mostly looked at probable contexts.

If this study hadn't included the lowprobability-context conditions...

- Speakers think about the state of mind of the conversational partner
- Prosodic profile of an utterance reflects speaker's expectation/surprise about what the other person has in mind
- **Corrective focus** causes extra prosodic prominence when the other person shouldn't have been mistaken
 - Speaker is surprised by mistake (if high-probability word)
- New-information focus causes extra prosodic prominence when the other person could have inferred the object
 - Speaker thinks: Why is the other person asking about THAT?

What were individuals doing?

- Source of variability? Partly noise
 - Due to our experimental design (no repetitions, to ensure naturalness)
- Some key observations about different types of speakers
 - How individuals' prosodic styles might contribute to the main patterns

Related work on individual differences, for instance: Gagne, Masterson, Munhall, Bilida, & Querengesser (1994) and Ferguson (2004) on speech intelligibility; Koreman, Andreeva, Barry, Sikveland & van Dommelen (2008) and Niebuhr, D'Imperio, Fivela & Cangemi (2011) on pitch accents

1. Pitch raising vs. lowering on Obj

Recall that we looked for prosodic signs of prominent Obj:

- High pitch on Obj <= overall data showed nothing here?
- Low pitch right after Obj (= post-focus compression) (e.g. Xu, Chen & Wang 2012)
- Individual patterns help explain this:
 - Some speakers marked prominence on objects by <u>raising</u> pitch
 - Other speakers marked prominence on objects by **lowering** pitch

 May explain why main data set had no clear differences during Obj, and why post-focus compression turned out to be more robust

2. Highly sensitive vs. insensitive to word frequency and contextual probability

People differ in how sensitive they are to word frequency and contextual probability

- Some speakers distinguished between IS categories in all conditions: <u>highly insensitive to freq and prob</u>
- Some speakers distinguished between IS categories only in the high-freq high-prob condition: <u>highly sensitive to (low) freq</u> and (low) prob
- Some speakers showed interaction between focus and prob, but <u>no interaction between focus and freq</u>
- Some speakers showed interaction between focus and freq, but <u>no interaction between focus and prob</u>

3. 'Soft' correction

- How forcefully do speakers correct?
 - Some speakers showed 'anti-prominence' in corrective sentences
 - Their pitch cues for corrective focus seemed to be even less prominent than VP focus

OBJ

in/on/at the

LOC

VERB

they

Politeness? We had similar findings on intensity in a prior study (Ouyang & Kaiser 2013)

Subj 011

Conclusions

- New insights gained by combining "information theory" and "information structure"
 - To understand how speakers encode focus types prosodically, we need to consider word frequency and contextual probability
- Interaction-based explanation:
 - Prosody reflects speaker's expectation/surprise about what the other person has in mind

• Individual differences

- Further analyses are on-going
- Current thoughts: Individual differences include variability in how sensitive people are to frequency and probability and how they mark prominence

References

- Baker, R. E. & Bradlow, A. R. 2009. Variability in word duration as a function of probability, speech style, and prosody. Language And Speech, 52:4, 391–413.
- Breen, M., Fedorenko, E., Wagner, M. & Gibson, E. 2010. Acoustic correlates of information structure. Language and Cognitive Processes, 25:7, 1044-1098.
- Ferguson, S. H. 2004. Talker differences in clear and conversational speech: vowel intelligibility for normalhearing listeners. Journal of Acoustical Society of America, 116:4, 2365–2373.
- Gagne, J.-P., Masterson, V., Munhall, K. G., Bilida, N. & Querengesser, C. 1994. Across talker variability in auditory, visual, and audiovisual speech intelligibility for conversational and clear speech. Journal of Academy of Rehabilitative Audiology, 27: 135-158.
- Gahl, S. 2008. "Time" and "thyme" are not homophones: the effect of lemma frequency on word durations in spontaneous speech. Language, 84:3, 474-496.
- Katz, J. & Selkirk, E. 2011. Contrastive focus vs. discourse-new: evidence from phonetic prominence in English. Language, 87:4, 771-816.
- Koreman, J., Andreeva, B., Barry, W. J., Sikveland, R. O., van Dommelen, W. 2008. Cross-language differences in the production of phrasal prominence in Norwegian and German. Nordic Prosody, Proceedings of the Xth Conference, 139-150.
- Niebuhr, O., D'Imperio, M., Fivela, B. G. & Cangemi, F. 2011. Proceedings of the XVIIth International Congress of Phonetic Sciences.
- Ouyang, I. C. & Kaiser, E 2013. Prosody and information structure in a tone language: an investigation of Mandarin Chinese. Language and Cognitive Processes. doi:10.1080/01690965.2013.805795.
- Pan, S. & Hirschberg, J. 2000. Modeling local context for pitch accent prediction. Proceedings of the 38th Annual Meeting on Association for Computational Linguistics, 233-240.
- Xu, Y., Chen, S.-W. & Wang, B. 2012. Prosodic focus with and without post-focus compression: a typological divide within the same language family? The Linguistic Review, 29, 131-147.