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Does information about the speaker help listeners extract meaning?

Do individual differences matter?
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identify the word as ‘ship’ in this case. To our knowledge
this prediction has not yet been tested.

Tuning of speech perception
The mechanisms of speech perception must be tuned to
dialectical and speaker differences. For example, speakers
of French and Spanish place the boundary between /b/ and
/p/ at a different place from native English speakers. When
listening to a native French or Spanish speaker producing
English words like ‘pore’ or ‘pier’, adjustment of the bound-
ary allows the listener to avoid perceiving these utterances
incorrectly as ‘bore’ or ‘beer’. According to the interactive
view, we would naturally predict that lexical influences
would help guide the retuning of the pre-lexical mechan-
isms that mediate boundary adjustment. In fact, just such
a role for lexical context was explicitly suggested by

McClelland and Elman [2]. And indeed, in accordance with
this, several recent experiments [30–35] have demon-
strated that lexical influences can also guide tuning of
speech perception. When listeners heard a perceptually
ambiguous /s/-/f/ sound at the end of an utterance that
would be a word if completed with /s/, they identified the
sound as /s/. Repeated exposure to this sound in /s/-biased
lexical contexts retuned perception so that subsequently
the sound tended to be heard as /s/ even in lexically neutral
contexts. Furthermore, consistent with a pre-lexical locus
for this effect, subsequent word identification processes are
also affected: the ambiguous sound, when placed in a
context where either /s/ or /f/ could make a word, results
in lexical activation of the /s/-consistent alternative [35].
These findings follow directly from the interactive frame-
work. Indeed, in simulations, we have shown that the
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Box 1. The TRACE model of speech perception

The TRACE model of speech perception is described fully in [2] and
a fully-documented implementation is available on the web
(http://maglab.psy.uconn.edu/jtrace/) and is described in [45]. The
model (Figure I) consists of a feature layer, a phonemic layer and a
lexical layer. Each layer consists of a set of simple processing units each
corresponding to the possible occurrence of a particular linguistic unit
(feature, phoneme, or word) at a particular time within a spoken input.
Activation of a processing unit reflects the state of combined evidence
within the system for the presence of that linguistic unit. Mutually
consistent units on different levels (/k/ as the first phoneme in a spoken
word, ‘kiss’ as the identity of theword) activate each other via excitatory
connections, whereas mutually inconsistent units within the same level
(/k/ and /g/ as the first phoneme) compete through mutually inhibitory
connections. When input is presented at the feature layer, it is
propagated to the phoneme layer and then to the lexical layer.
Processing proceeds incrementally with between-layer excitation and
within-layer competitive inhibition (Figure I). Crucially, excitation flow
is bi-directional: both bottom-up (features to phonemes to words) and
top-down (words to phonemes to features).
Featural information relevant to speech perception is represented

by seven banks of units corresponding to values along each of seven
feature dimensions. For example, one feature bank represents the
degree of voicing, which is low for unvoiced sounds such as /t/ and /s/

and higher for voiced sounds such as /d/ and /z/. At the phoneme and
lexical levels, one unit stands for each possible phoneme or word
interpretation of the input. These sets of units and the connections
between them are duplicated for as many time slices as necessary to
represent the input to the model. Excitatory between-layer connec-
tions and inhibitory within-layer connections apply only to units
representing speech elements that overlap in time.
The activation level of a unit is a function of its current activation

state relative to its maximum or minimum activation level and the net
input to the unit. Negative net input drives the unit towards its
minimum activation level, positive net input drives the unit towards
its maximum activation level and unit activation tends to decay to its
baseline rest activation level.
Compensation for co-articulation in the TRACE model was simu-

lated by assuming that activation of phoneme units in one time slice
modulated connections from feature to phoneme units in adjactent
time slices [2,18]. Recent evidence of cross-influences between
speech and non-speech [19,20] suggest that this effect could occur
through contrast enhancement across neighboring time points at a
processing level shared by speech and non-speech. Such interactions
could be implemented by allowing lateral interactions across time
slices within the feature level of the TRACE model, and by allowing
activation there to be produced by both speech and non-speech input.

Figure I. Architecture of the TRACE model. Bi-directional excitatory connections are shown in red: mutually consistent elements at adjacent levels support each other
through excitation. Units within a layer compete through inhibitory connections (blue; the full set is shown for the lexical layer, for clarity only a schematic connection is
shown at the phoneme level).

www.sciencedirect.com

The TRACE model, 2006

TRACE’s architecture:

Red: Bi-directional excitatory 
connections.
Mutually consistent elements 
at adjacent levels support 
each other 
through excitation.

Blue: Units within a layer 
compete through inhibitory 
connections. 



The episodic view
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Which is right?

‘sweet shop’

      s w iː ʧ ɒ p

‘sweet shop’

?



Perceptual learning in speech

“Perceptual learning [...] refers to an increase in the ability to extract 
information from the environment, as a result of experience and 
practice with stimulation coming from it.”

(Gibson 1969)
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Adjusting pre-lexical categories

Listeners can use lexical information to adjust their 
perception of an ambiguous sound:

An ambiguous fricative sound /sf?/ is perceived 

as /s/ in a context like albatro–
as /f/ in a context like paragra–

After repeated exposure to the sound in such lexically-
biased contexts, listeners adjust their category boundary 
between /s/ and /f/ in a way that is consistent with the 
lexical context.

Norris, McQueen & Cutler (2003) Cognitive Psychology



Adjusting pre-lexical categories

s-biased
“De uitgangspositie van ons land 

is en blijft relatief positief”

f-biased
“De uitgangspositie van ons land 

is en blijft relatief positief”

Exposure:
Ambiguous /sf?/ sound embedded in continuous speech

Pretest:
f/s categorization

Posttest:
f/s categorization



Adjusting pre-lexical categories
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Effects of long-term familiarity with a speaker?

Perceptual learning occurred regardless of 
familiarity with the speaker.



Adjusting pre-lexical categories
Norris et al. 2003

Bertelson et al. 2003

Listeners use lexical information to adjust their perception 
of an ambiguous sound.

This type of learning 

• does not require explicit attention

• can be specific for a particular talker

—or not, depending on the type of phoneme

• remains stable for at least 12 hours

• can be modulated by context

• generalizes across the lexicon

• also works with visual information from the face

• also works using phonotactic constraints

McQueen et al. 2006

Eisner & McQueen 2005

Kraljic & Samuel 2006

Eisner & McQueen 2006

Cutler et al. 2008

Kraljic et al. 2008

McQueen et al. 2006



Encoding of position?

Word-final devoicing in Dutch-accented English
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Exposure Test
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• Perceptual learning generalized to word-initial 
position when listeners had not heard normally-
voiced initial stops.

• However, this generalization was constrained when 
listeners had exposure to normally-voiced initial 
stops, and when the speaker had no general foreign 
accent.

• This suggests that there can be sensitivity to the 
position in which the critical phoneme occurs.

• Learning generalised from exposure words to a novel 
set of test words.



Behavioral/Systems/Cognitive

Auditory Cortex Encodes the Perceptual Interpretation of
Ambiguous Sound

Niclas Kilian-Hütten,1,2 Giancarlo Valente,1,2 Jean Vroomen,3 and Elia Formisano1,2

1Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, and 2Maastricht Brain Imaging Center, Maastricht University, 6200 MD
Maastricht, The Netherlands, and 3Department of Psychology, Tilburg University, 5000 LE Tilburg, The Netherlands

The confounding of physical stimulus characteristics and perceptual interpretations of stimuli poses a problem for most neuroscientific
studies of perception. In the auditory domain, this pertains to the entanglement of acoustics and percept. Traditionally, most study
designs have relied on cognitive subtraction logic, which demands the use of one or more comparisons between stimulus types. This does
not allow for a differentiation between effects due to acoustic differences (i.e., sensation) and those due to conscious perception. To
overcome this problem, we used functional magnetic resonance imaging (fMRI) in humans and pattern-recognition analysis to identify
activation patterns that encode the perceptual interpretation of physically identical, ambiguous sounds. We show that it is possible to
retrieve the perceptual interpretation of ambiguous phonemes—information that is fully subjective to the listener—from fMRI mea-
surements of brain activity in auditory areas in the superior temporal cortex, most prominently on the posterior bank of the left Heschl’s
gyrus and sulcus and in the adjoining left planum temporale. These findings suggest that, beyond the basic acoustic analysis of sounds,
constructive perceptual processes take place in these relatively early cortical auditory networks. This disagrees with hierarchical models
of auditory processing, which generally conceive of these areas as sets of feature detectors, whose task is restricted to the analysis of
physical characteristics and the structure of sounds.

Introduction
Investigations of perceptual processing are usually faced with a
confounding problem when attempting to separate out subjec-
tive perception from the processing of stimulus-specific charac-
teristics. This is because, usually, differential percepts follow
differential physical stimulus characteristics, i.e., distinct stimuli
elicit distinct percepts. The traditional reliance on cognitive sub-
traction logic, which demands the use of one or more compari-
sons between stimulus types, renders dissociating sensation from
conscious perception impossible.

In the visual domain, this problem has been tackled using
ambiguous stimuli and the phenomenon of multistable percep-
tion (for review, see Sterzer et al., 2009). In the auditory domain,
however, the creation of stimuli and designs that permit compar-
ing differential perceptual states while keeping the physical input
constant seems a bigger challenge. In previous studies, tempo-
ral phenomena, such as auditory streaming (Cusack, 2005;
Gutschalk et al., 2005) or illusory continuity (Riecke et al.,
2009) have been investigated similarly in human subjects.
However, to date, no attempt has been made to employ eco-
logically valid, ambiguous auditory stimuli to investigate the

neural basis of differential perceptual interpretations of an
auditory stimulus’s identity.

Here, we use functional magnetic resonance imaging (fMRI)
and pattern-recognition analysis to identify activation patterns
that encode the perceptual interpretation of physically identical,
ambiguous phonemes. We adhere to a principle based on the
McGurk effect, called cross-modal recalibration (Bertelson et al.,
2003), in which lip movements are used to disambiguate ambig-
uous auditory phonemes. Repeated presentation of these videos
increases the proportion of corresponding responses in subse-
quent audio-only forced-choice trials, thus eliciting an afteref-
fect. This enables us to compare physically identical, yet
differentially perceived, sounds, and thus allows for the investi-
gation of a purely perceptual distinction of stimulus identity.

According to popular models of auditory processing, repre-
sentations become more abstract with hierarchical distance to the
primary auditory cortex (A1) along two (what/where) pathways
(Scott and Johnsrude, 2003; Liebenthal et al., 2005; Rauschecker
and Scott, 2009). In humans, the regions adjacent to the Heschl’s
gyrus, which we refer to as early auditory cortex, are supposedly
restricted to the analysis of physical features and the acoustic
structure of sounds. In contrast to this notion, fMRI and pattern-
recognition techniques (Haxby et al., 2001; Haynes and Rees,
2005) have recently been used to demonstrate the existence of
vowel representations in these regions that were invariant of the
specific speaker uttering them (Formisano et al., 2008). These
findings suggest the presence of abstract perceptual sound repre-
sentations in early auditory areas. The same vowels, however,
even when uttered by distinct speakers, still share an abundance
of acoustic similarities. Whether it is these acoustic features or the
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perceptual categorization of the vowels that forms the basis of
classification cannot be conclusively resolved by this study. The
use of acoustically identical stimuli, which are perceptually cate-
gorized as distinct auditory entities, seems to be the only way to
overcome this problem. Here, we trained our pattern classifica-
tion algorithm on purely perceptual labels and restricted the in-
formation provided to it to voxels within the temporal lobe to
investigate the role of the auditory cortex in constructive percep-
tual processing.

Materials and Methods
Participants. Twelve healthy native Dutch students of the University
Maastricht (five males; mean age, 24.83 years) were recruited to partici-
pate in the study. One participant was left-handed. None of the partici-
pants had a history of hearing loss or neurological abnormalities.
Approval for the study was granted by the Ethical Committee of the
Faculty of Psychology at the University of Maastricht. One subject was
discarded on the basis of a self-reported difficulty in categorizing the
phonemes (perceiving them exclusively as /asa/), which was reflected as
an extreme response bias in the behavioral data.

Stimuli. The stimulation entailed digital auditory and visual record-
ings of a male Dutch speaker pronouncing the syllables /aba/ and /ada/.
The two auditory stimuli were 640 ms, with 240 ms stop closure. From
these, a place-of-articulation continuum was synthesized by means of
varying the F2 formant by equal steps of 39 Mel, resulting in nine differ-
ent stimuli, ranging from a clear /aba/ via seven ambiguous stimuli to a
clear /ada/. The audiovisual stimuli were synthesized by pairing the visual
recordings of the speaker pronouncing /ada/ and /aba/, respectively, with
the most ambiguous auditory stimulus, determined as such in a pretest.

Behavioral pretest. Each participant underwent an auditory pretest
outside the fMRI scanner to individually determine the most ambiguous
auditory stimulus from the /aba/-to-/ada/ continuum (Bertelson et al.,
2003). This pretest consisted of 98 forced-choice judgments on all differ-
ent stimuli from the continuum, with presentation frequency biased, so
that the five central stimuli were presented in 14 trials, the second and
tenth stimuli were presented in eight trials, and the first and the eleventh
stimuli were presented in six trials. Stimuli were presented binaurally
through loudspeakers. Participants were required to press one of two
buttons if they had perceived /aba/ and the other one if they perceived
/ada/. This resulted in an estimation of each participant’s ambiguous
auditory token (A?), which was used for the rest of the session (Fig. 1).

Experimental procedure. The experimental procedure during scanning
was based on the phenomenon of cross-modal recalibration, a McGurk

aftereffect (Bertelson et al., 2003). In a typical McGurk paradigm, an
auditorily presented disyllable (/aba/) is paired with an incongruent vi-
sual disyllable (/aga/), pronounced by a speaker. The addition of this
incongruent visual input changes the listener’s auditory percept into an
intermediate one (/ada/). Interestingly, when an ambiguous auditory
component (A?, between /aba/ and /ada/) is used, exposure to this am-
biguous stimulus dubbed onto a video of a face pronouncing /aba/ or
/ada/ selectively increases the proportion of corresponding responses in
subsequent audio-only forced-choice trials. This makes it possible to
contrast conditions where the physical stimulus is identical, whereas the
perceptual interpretation differs by comparing brain activation patterns
in response to auditory posttest stimuli perceived as /aba/ versus /ada/.
This logic, thus, allows for the investigation of a purely perceptual dis-
tinction of stimulus identity.

The design entailed two major elements (Fig. 2): blocks of multimodal
exposure (the recalibration phase) and slow, event-related auditory post-
tests. In the recalibration phase, videos were presented, consisting of the
individually determined ambiguous stimulus A?, dubbed on the visual
recording of the speaker pronouncing either /aba/ (Vb) or /ada/ (Vd).
Bimodal stimuli were presented in blocks of eight identical trials (block
A?Vb or block A?Vd), with an interstimulus interval (ISI) of one repeti-
tion time (TR; 2000 ms). In each of the two runs, five A?Vb and five A?Vd
blocks were run in randomized order (160 trials total). During these
exposure trials, participants were required to press a button whenever a
small white spot (12 pixels) appeared on the speaker’s upper lip to ensure
participants focused their attention on the speaker’s lips. This occurred
once per block at a random position.

Each block of bimodal exposure was followed by six auditory posttests
(120 trials total), which, like the pretests, consisted of forced-choice /aba/–/
ada/ judgments. Unlike the pretests, however, here only the A? token and the
two tokens closest to it on the continuum were presented, twice each. Due to
the use of a slow event-related design, the jittered ISI was six TR (12 s) on
average (Fig. 2).

Scanning parameters. Functional MRI data were collected on a 3-tesla
fMRI scanner (head set-up, Siemens) at the Maastricht Brain Imaging
Center in Maastricht, The Netherlands. For each participant, two func-
tional runs of 665 volumes were acquired. For later overlay, a high-
resolution structural scan (voxel size, 1 ! 1 ! 1 mm 3) was collected
using a T1-weighted three-dimensional (3D) ADNI sequence [TR, 2050
ms; echo time (TE), 2.6 ms; 192 sagittal slices]. Both functional runs and
the structural scan were acquired in a single session for each participant.
For functional images, a blood oxygenation level-dependent (BOLD)-
sensitive echo-planar imaging (EPI) sequence was used (matrix, 64 ! 64,
27 slices; slice thickness, 3 mm; field of view, 192 ! 192 mm 3, resulting
voxel size, 3 ! 3 ! 3 mm 3; TE/acquisition time slice, 30/55.5, flip angle,
90°). Volume acquisition was clustered in the beginning of each TR,
leaving a silent delay within each TR during which stimuli were presented
in the absence of EPI noise. This was done to optimize stimulus audibil-
ity, an approach which has been shown to be highly efficient in auditory
fMRI paradigms (Jäncke et al., 2002; van Atteveldt et al., 2007). Hence,
the effective TR was 2000 ms, including 1500 ms of sequence scanning
time and a 500 ms silent delay. Stimuli were presented and synchronized
with the MR pulses using the software package Presentation (Neurobe-
havioral Systems).

Data preprocessing. Functional and anatomical images were analyzed
using BrainVoyager QX (Brain Innovation) and customized code written
in MATLAB (MathWorks). Several preprocessing steps were performed:
sinc-interpolated slice-time correction, 3D-motion correction to correct
for common small head movements by spatially aligning all volumes to
the first volume by rigid body transformations, linear trend removal, and
temporal high-pass filtering to remove low-frequency nonlinear drifts of
seven or less cycles per time course. Functional slices were then coregis-
tered to the structural volume on the basis of positioning parameters
from the scanner and manual adjustments to ensure optimal fit. Subse-
quently, they were transformed into Talairach space. All individual
brains were segmented at the gray/white matter boundary using a semi-
automatic procedure based on intensity values implemented in Brain-

Figure 1. Results of the auditory pretest. The mean proportions (p) of /aba/ classifications
across the 11 participants for each stimulus in the nine-sound continuum are given. Sound 4 was
chosen as A? for eight of the participants and sound 5 for the remaining three.
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lateral human belt regions within area PT. However, in vivo neu-
roimaging experiments in humans currently do not allow the
exact localization of maps in terms of cytoarchitectonic areas
and/or single-cell response patterns. Said tonotopy mapping ex-
periments, as well as probabilistic cytoarchitectonic maps (Mo-
rosan et al., 2001; Rademacher et al., 2001), suggest A1 itself to be
centered mostly on the convexity of medial Heschl’s gyrus, an
area that is mostly absent from our group discriminative maps.
Definite assertions remain problematic due to the aforemen-
tioned intersubject variability in macro-anatomical morphology,
cytoarchitectonic make-up, and the relation between the two, as
well as the differences in normalization. However, it seems likely
that our maps identify mostly nonprimary auditory areas. Addi-
tional clusters of smaller extent were found at the left temporopa-
rietal junction and, bilaterally, on middle STG and STS.

Discussion
In the present study, we used cross-modal recalibration to influ-
ence participants’ perception of ambiguous speech sounds. We
then trained an SVM pattern classifier on fMRI data, which was
categorized using purely subjective perceptual labels. Our results
show that pure perceptual interpretation of physically identical
phonemes can be decoded from cortical activation patterns in
early auditory areas. More specifically, our findings provide di-
rect empirical evidence that, beyond the basic acoustic analysis of
sounds, constructive perceptual information is present in regions
within the anterior PT, tangent to the posterior bank of Heschl’s
gyrus and sulcus.

Concerning speech perception, hierarchical views of auditory
processing (Rauschecker and Scott, 2009) suggest a gradient of
increasing processing complexity in the anterior superior tempo-
ral gyrus (i.e., the what stream), where regions show the first clear
responses to abstract, linguistic information in speech. Further, it
has been suggested that “phonetic maps have some anatomical

implementation in anterior temporal lobe
areas” (Rauschecker and Scott, 2009). Hi-
erarchically lower auditory regions, in
contrast, are allegedly limited to low-level
acoustic feature analysis. Our finding that
regions in the PT adjacent to, and touch-
ing upon, Heschl’s gyrus and sulcus dis-
criminate stimuli on a purely perceptual
level goes beyond such a limited feature-
bound processing role. It is, however, in
line with single-cell recording studies in
monkeys and cats (Micheyl et al., 2005,
2007; Nelken and Bar-Yosef, 2008). For
instance, object representations have been
suggested to be present even as early as in
A1 (Bar-Yosef and Nelken, 2007). Fur-
thermore, Micheyl and colleagues (2005)
demonstrated a strong correspondence
between psychophysical findings on audi-
tory stream formation in humans and
single-unit responses in rhesus monkeys’
A1, suggesting the possibility that audi-
tory streaming percepts have a represen-
tation already in A1 in the absence of
stimulus differences. However, compar-
ing human behavior with primate neuro-
nal responses is obviously problematic.
Differences in behavior, perception, and
neuroanatomy are unavoidable. Our re-
sults provide direct empirical evidence

that, in humans, processing in early auditory cortex, probably
corresponding to human belt areas, is not limited to low-level
stimulus feature analysis.

Although across-study comparisons of the roles of human
auditory areas are problematic due to differences in normaliza-
tion techniques, analysis methods, and even anatomical nomen-
clature, our findings do seem to be in line with some previous
works. Macroscopically, area PT has been described as a compu-
tational hub, which segregates spectrotemporal patterns, com-
pares them to stored patterns, and outputs auditory objects
(Griffiths and Warren, 2002), which is compatible with our re-
sults. Location and functional role of a smaller part of our clusters
in PT is accordant with Spt, a functional subdivision of PT, which
has been described as a sensory-motor integration region for the
vocal tract motor effector (Hickok and Poeppel, 2007; Hickok et
al., 2009). This is in line with the suggestion that PT is part of the
dorsal stream of auditory processing (revised to include language
in addition to spatial functions) and possesses the representation
of templates for doable articulations, effectively disambiguating
phonological information (Rauschecker and Scott, 2009). In the
present experiment, this sensory-motor function of the posterior
PT may serve to disambiguate ambiguous phonemes on the basis
of previously seen lip movements. A functional role in cross-
modal integration has been suggested before for similar regions
(van Atteveldt et al., 2004). The output of an acoustic–phonetic
analysis in PT may be probabilistic and represent prelexical pho-
nemic categories, as has been suggested previously (Obleser and
Eisner, 2009).

In terms of neurocomputational plausibility, our data may be
accordant with reverse hierarchy theory, which states that, by
default, rapid perception is based on high-level (e.g., phonologi-
cal) representations alone, which are holistic and ecologically
meaningful (Hochstein and Ahissar, 2002; Ahissar et al., 2009).

Figure 5. Discriminative map. Group map of the 30% of active voxels most discriminative for the purely perceptual difference
between /aba/ and /ada/ (cortex-based aligned, smoothed). A location was color-coded if it was present on the individual maps of
at least seven of the 11 subjects. This corresponds to a false discovery rate-corrected threshold of q ! 2.75 " 10 #3. Maps are
overlaid on the reconstructions of the average hemispheres of the 11 subjects (top) and on inflated reconstructions of the right and
left temporal lobes of these average hemispheres (bottom). RH, Right hemisphere; LH, left hemisphere; HG, Heschl’s gyrus.
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The clown had a funny face.

“a?a”

ABA

ADA

Kilian-Hütten, Valente, Vroomen, & Formisano (2011) Journal of Neuroscience.



“We propose that what is reflected in the reliance on early networks in this case 
is [...] a perceptual bias that is stored in these regions.

This bias is responsible for the behavioral (perceptual) effect and is installed by 
the cross-modal recalibration mechanism.

Its origin may lie within higher-order areas involved in the integration of 
audiovisual speech signals [...]. The information is then fed back from there to 
early auditory areas.

Here, [...] the perceptual bias is stored and sensory input is transformed into 
more abstract entities or auditory objects. These abstract entities may be 
considered as the building blocks of further linguistic and vocal processing.”

.Kilian-Hütten, Valente, Vroomen, & Formisano (2011) Journal of Neuroscience.
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Pre-lexical vs higher-level processing

Common computational function of the postero-dorsal stream
The dual-stream processing model in audition4,5 has been a useful
construct in hearing research, perceptual physiology and, in particular,
psycholinguistics, where it has spawned several further models73,74 that
have tried to accommodate specific results from this field. The role of a
ventral stream in hierarchical processing of objects, as in the visual
system, is now widely accepted. Specifically for speech, anterior regions
of the superior temporal cortex respond to native speech sounds and
intelligible speech, and these sounds are mapped along phonological
parameter domains. By contrast, early posterior regions in and around
the planum temporale are involved in the processing of many different
types of complex sound. Later posterior regions participate in the
processing of auditory space and motion but seem to integrate input
from several other modalities as well.
Although evidence is strong for the role of the dorsal pathway

(including pST) in space processing, the dorsal pathway needs to
accommodate speech and language functions as well. Spatial trans-
formations may be one example of fast adaptations used by ‘internal
models’ or ‘emulators’, as first developed in motor control theory.
Within these models, ‘forward models’ (predictors) can be used to
predict the consequences of actions, whereas ‘inverse models’ (con-
trollers) determine the motor commands required to produce a desired
outcome88. More recently, forward models have been used to describe
the predictive nature of perception and imagery89. The IPL could
provide an ideal interface, where feed-forward signals from motor
preparatory networks in the inferior frontal cortex and premotor cortex
(PMC) can be matched with feedback signals from sensory areas72.
In speech perception and production, projections from articulatory

networks in Broca’s area and PMC to the IPL and pST interact with
signals from auditory cortex (Fig. 5). The feed-forward projection from
Brodmann area 44 (and ventral PMC) may provide an efference copy
in the classical sense of von Holst and Mittelstaedt90, informing the
sensory system of motor articulations that are about to happen. This
occurs in anticipation of a motor signal if the behavior is enacted,
or as imagery if it is not. The activity arriving in the IPL and pST
from frontal areas anticipates the sensory consequences of action.
The feedback signal coming to the IPL from pST, conversely,
could be considered an ‘‘afference copy’’91 with relatively short
latencies and high temporal precision92—a sparse but fast primal

sketch of ongoing sensory events93 that are compared with the
predictive motor signal in the IPL at every instance.
‘Internal model’ structures in the brain are generally thought to

enable smooth sequential motor behaviors, from visuospatial reach-
ing to articulation of speech. The goal of these models is to minimize
the resulting error signal through adaptive mechanisms. At the same
time, these motor behaviors also support aspects of perception, such
as stabilization of the retinal image and disambiguation of phono-
logical information, thus switching between forward and inverse
modes. As Indefrey and Levelt94 point out, spoken language ‘‘con-
stantly operates a dual system, perceiving and producing utterances.
These systems not only alternate, but in many cases they partially or
wholly operate in concert.’’ What is more, both spatial processing
and real-time speech processing make use of the same internal
model structures.
In summary, our new model of the auditory cortical pathways builds

on the previous model of dual processing pathways for object identi-
fication and spatial analysis5,6, but integrates the spatial (dorsal) path-
way with findings from speech andmusic processing as well. Themodel
is based on neuroanatomical data from nonhuman primates, operating
under the assumption that mechanisms of speech and language in
humans have built on structures available in other primates. Finally,
our newmodel extends beyond speed processing74 and applies in a very
general sense to both vision and audition, in its relationship with
previous models of perception and action26,27.

Note: Supplementary information is available on the Nature Neuroscience website.
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Figure 5 Dual auditory processing scheme of the human brain and the role
of internal models in sensory systems. This expanded scheme closes the loop
between speech perception and production and proposes a common
computational structure for space processing and speech control in the
postero-dorsal auditory stream. (a) Antero-ventral (green) and postero-dorsal
(red) streams originating from the auditory belt. The postero-dorsal stream
interfaces with premotor areas and pivots around inferior parietal cortex,
where a quick sketch of sensory event information is compared with a
predictive efference copy90 of motor plans. (b) In one direction, the model
performs a forward mapping: object information, such as speech, is decoded
in the antero-ventral stream all the way to category-invariant inferior frontal
cortex (area 45), and is transformed into motor-articulatory representations
(area 44 and ventral PMC), whose activation is transmitted to the IPL (and
posterior superior temporal cortex) as an efference copy. (c) In reverse
direction, the model performs an inverse mapping, whereby attention- or
intention-related changes in the IPL66,67 influence the selection of context-
dependent action programs in PFC and PMC. Both types of dynamic model
are testable using techniques with high temporal precision (for example,
magnetoencephalography in humans96 or single-unit studies in monkeys) that
allow determination of the order of events in the respective neural systems.
AC, auditory cortex; STS, superior temporal sulcus; IFC, inferior frontal
cortex, PMC, premotor cortex; IPL, inferior parietal lobule; CS, central sulcus.
Numbers correspond to Brodmann areas.
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models are organized hierarchically into consecutive levels
of processing that deal with increasingly abstract units of
representation. The TRACE model [14], for instance, con-
sists of three layers – corresponding to acoustic-phonetic
features, phonemes and words – and the primary flow of
information is from the feature level to the lexical level, in
which words are represented abstractly.

However, the focus of these models is on word recog-
nition, and not on pre-lexical abstraction. Although the
purpose of pre-lexical categories has been to mediate be-
tween the speech signal and the mental lexicon, the input
to most models is not a psychologically realistic repres-
entation of the speech signal, but instead consists of unam-
biguous, already abstracted, strings of phonemes (other
units of pre-lexical representation have been proposed,
including features, diphones, triphones or syllables [15]).

Neither human speech science nor automatic speech
recognition approaches [16] have been able to identify
invariant acoustic features that correspond to the percep-
tion of speech sounds reliably across different contexts and
talkers. It seems that pre-lexical speech processing
depends on both an acoustic-phonetic analysis and other
factors such as talker, speech rate or phonological context.
These sources of information are combined into an output
that is probabilistic rather than discrete (Figure 1a).

A probabilistic view of pre-lexical abstraction has
recently been implemented by Norris and McQueen [17]
in the Shortlist B model. In contrast to models in which

word recognition is achieved on the basis of unambiguous
strings of discrete phonemes, the input to Shortlist B takes
the form of phoneme likelihoods which vary over time.
These phoneme likelihoods were derived from a beha-
vioural gating experiment, and thus reflect actual listening
ambiguities that arise for phonemes that are similar on a
perceptual dimension at a given point in time. Phoneme
likelihoods are noisier than discrete phoneme strings, but,
in addition to being a more realistic representation of what
listeners are faced with, they also contain more infor-
mation about the acoustic context. Although not currently
implemented in Shortlist B, a probabilistic type of input to
a computational model has the potential of taking into
account adjustments to talker idiosyncrasies by altering
phoneme likelihoods in a talker-and context-specific man-
ner (Figure 1a).

Insights on the abstraction of speech sounds from
animal physiology
The human auditory system shares basic mechanisms of
spectro-temporal encoding and cortical map formation
with other mammals. In the processing of simple to
increasingly complex sounds, a hierarchical division of
auditory cortex into ‘core’, ‘belt’ and ‘parabelt’ areas has
been established in non-human primates [18,19]. Although
there is a debate about the number and exact function of
these subfields in different species (e.g. see Ref. [5]), especi-
ally ‘belt’ and ‘parabelt’ regions are thought to support the

Figure 1. Functional (a) and macroanatomical (b) architecture of the pre-lexical abstraction process. (a) Acoustic cues such as burst intensity, voice onset time and spectral
centre of gravity are extracted in primary auditory cortex [28,31,32] and then integrated into language-specific abstract units which can be used for word recognition. We
suggest that the output of the abstraction process is a probabilistic result of a cue weighting process. Left upward arrow in (a): contextual influences such as talker
characteristics or noise in the listening situation require re-adjustment of the relative influence of acoustic-phonetic cues on the probabilistic output of abstraction. Left
downward arrow in (a): perceptual learning mechanisms can utilize higher-level (e.g. lexical) information for re-tuning phoneme likelihoods over time [4,17,59].
Phonological memory is thought to operate on units that result from this pre-lexical abstraction process. (b) A set of brain activations from MEG and fMRI studies which
have directly addressed pre-lexical processing of speech are mapped onto a sagittal view of a standardized brain (Montreal Neurological Institute [MNI] coordinate system).
The colour coding represents a distinction of early components in the MEG signal (P50m, N100m; yellow), non- or pre-categorical responses to meaningful speech sounds
and spectro-temporally matched complex sounds (orange), meaningful speech sounds evoking a larger response compared with non-speech sounds (red) and detection of
a phonological change, but not merely an acoustic change (green).
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Increase in intelligibility

Improvement in speech comprehension after a period of 
exposure has been shown for various, ‘global’ sources of 
potential difficulty, including

• accents

• talker variation

• synthetic speech

• time-compressed speech

• noise-vocoded speech

Greenspan et al. 1988

Nygaard et al. 1998

Rosen et al. 1999

Clarke & Garrett 2004

Dupoux & Green 1997



Noise-vocoded speech
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Can individual differences in perceptual learning of 
this type of signal be predicted by neural, cognitive, 
or auditory measures?
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Learnable vs. spectrally inverted sentences

Eisner, McGettigan, Faulkner, Rosen, & Scott (2010)



Individual variation in performance

RFX; p<.001; k=40

Inferior frontal gyrus (BA 45)

x = –46, y = 26, z = 20 x = –44, y = 14, z = 26

Variation with learning scores Variation with working memory scores

!1.5 !1 !0.5 0 0.5 1 1.5
!0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Working memory score (a.u.)

L
e

a
rn

a
b

ili
ty

 e
ff

e
c
t 

(%
 s

ig
n

a
l 
c
h

a
n

g
e

)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
!0.2

!0.1

0

0.1

0.2

0.3

0.4

0.5

Learning score (a.u.)

L
e

a
rn

a
b

ili
ty

 e
ff

e
c
t 

(%
 s

ig
n

a
l 
c
h

a
n

g
e

)

L L
0 ��� ��� ��� ��� ��� ��� ��	


���


���

0

���

���

���

���

���

Learning score
Le

ar
na

bi
lit

y 
ef

fe
ct

 (%
 s

ig
na

l c
ha

ng
e)

Eisner et al. 2010



Learning to understand noise-vocoded speech

• Individual variation in overall performance and 
improvement, was associated with the left IFG, not 
auditory cortex. 

• This pattern suggests that individual variation in 
learning to understand degraded speech does not 
arise from differences in acoustic-phonetic 
processing.

• Individual differences appear to be linked to the ability 
to use higher-level linguistic information to extract 
meaning from a noisy pre-lexical signal.



This talk

I. Models of speech perception

II. Perceptual learning

Adjusting pre-lexical categories

Adjusting to global signal degradation

III. Implications for models and applications



Applications

There is a great deal of plasticity in how we perceive 
speech.
Relatively much is now known about how normal-
hearing listeners cope with difficult speech input.
This could inform clinical applications in the domain of 
rehabilitation from hearing loss – 

for example, understanding causes of inter-individual 
variability can lead to more targeted training, both in 
terms of who needs specific treatment, and what 
training regimes are likely to maximise the potential 
for improvement.
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models are organized hierarchically into consecutive levels
of processing that deal with increasingly abstract units of
representation. The TRACE model [14], for instance, con-
sists of three layers – corresponding to acoustic-phonetic
features, phonemes and words – and the primary flow of
information is from the feature level to the lexical level, in
which words are represented abstractly.

However, the focus of these models is on word recog-
nition, and not on pre-lexical abstraction. Although the
purpose of pre-lexical categories has been to mediate be-
tween the speech signal and the mental lexicon, the input
to most models is not a psychologically realistic repres-
entation of the speech signal, but instead consists of unam-
biguous, already abstracted, strings of phonemes (other
units of pre-lexical representation have been proposed,
including features, diphones, triphones or syllables [15]).

Neither human speech science nor automatic speech
recognition approaches [16] have been able to identify
invariant acoustic features that correspond to the percep-
tion of speech sounds reliably across different contexts and
talkers. It seems that pre-lexical speech processing
depends on both an acoustic-phonetic analysis and other
factors such as talker, speech rate or phonological context.
These sources of information are combined into an output
that is probabilistic rather than discrete (Figure 1a).

A probabilistic view of pre-lexical abstraction has
recently been implemented by Norris and McQueen [17]
in the Shortlist B model. In contrast to models in which

word recognition is achieved on the basis of unambiguous
strings of discrete phonemes, the input to Shortlist B takes
the form of phoneme likelihoods which vary over time.
These phoneme likelihoods were derived from a beha-
vioural gating experiment, and thus reflect actual listening
ambiguities that arise for phonemes that are similar on a
perceptual dimension at a given point in time. Phoneme
likelihoods are noisier than discrete phoneme strings, but,
in addition to being a more realistic representation of what
listeners are faced with, they also contain more infor-
mation about the acoustic context. Although not currently
implemented in Shortlist B, a probabilistic type of input to
a computational model has the potential of taking into
account adjustments to talker idiosyncrasies by altering
phoneme likelihoods in a talker-and context-specific man-
ner (Figure 1a).

Insights on the abstraction of speech sounds from
animal physiology
The human auditory system shares basic mechanisms of
spectro-temporal encoding and cortical map formation
with other mammals. In the processing of simple to
increasingly complex sounds, a hierarchical division of
auditory cortex into ‘core’, ‘belt’ and ‘parabelt’ areas has
been established in non-human primates [18,19]. Although
there is a debate about the number and exact function of
these subfields in different species (e.g. see Ref. [5]), especi-
ally ‘belt’ and ‘parabelt’ regions are thought to support the

Figure 1. Functional (a) and macroanatomical (b) architecture of the pre-lexical abstraction process. (a) Acoustic cues such as burst intensity, voice onset time and spectral
centre of gravity are extracted in primary auditory cortex [28,31,32] and then integrated into language-specific abstract units which can be used for word recognition. We
suggest that the output of the abstraction process is a probabilistic result of a cue weighting process. Left upward arrow in (a): contextual influences such as talker
characteristics or noise in the listening situation require re-adjustment of the relative influence of acoustic-phonetic cues on the probabilistic output of abstraction. Left
downward arrow in (a): perceptual learning mechanisms can utilize higher-level (e.g. lexical) information for re-tuning phoneme likelihoods over time [4,17,59].
Phonological memory is thought to operate on units that result from this pre-lexical abstraction process. (b) A set of brain activations from MEG and fMRI studies which
have directly addressed pre-lexical processing of speech are mapped onto a sagittal view of a standardized brain (Montreal Neurological Institute [MNI] coordinate system).
The colour coding represents a distinction of early components in the MEG signal (P50m, N100m; yellow), non- or pre-categorical responses to meaningful speech sounds
and spectro-temporally matched complex sounds (orange), meaningful speech sounds evoking a larger response compared with non-speech sounds (red) and detection of
a phonological change, but not merely an acoustic change (green).
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